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Relations were derived for calculating the volumetric mass transfer coefficient from the moments
of concentration response to the solute injection for the stagewise model with back flows and
stationary continuous phase.

When analysing the present or designing a new extraction column, we need its
mathematical model. With regard to the insufficient knowledge of behaviour of
dispersions, we do not manage without measuring on a pilot plant when seeking
the model and its parameters.

For investigating and predicting the mass transfer in an extraction column,
Wichterlová, Rod and Hanil1 propose a method which employs the concentration
response to the injection of tracer and solute into the apparatus operating with sta-
tionary continuous phase, to determine the model parameters. At the next step, the
operating conditions are chosen so that the validity of the parameter values obtained
is to be expected even for the countercUrrent arrangement. By solving the model
for these operating conditions and parameters obtained, the concentration profiles
and the column efficiency can then be calculated.

The parameter of longitudial mixing of continuous phase is determined from
the response to the injection of tracer into this phase in the middle of the column
by the method of Pekovich and Pebalk2. The responses to the injection of com-
ponents into the dispersed phase inlet are measured at this phase outlet from the
efficient part of column. The dispersed phase hold-up, parameter of longitudial
mixing and the volumetric mass transfer coefficient (i.e., the product of mass transfer
coefficient and interfacial area) are determined by an iterative method so as to
achieve the satisfactory agreement of the first moments and dimensionless variances
of calculated and experimental concentration responses in dispersed phase.

The determination of model parameters is facilitated if their good initial estimates
are available. These can be provided by the analytical solution of linear model.
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The analytical solution of the model with short-cut flow in the dispersed phase and
back flow in the continuous phase is reported in paper1. For the description of
behaviour of mechanically agitated extraction columns, the stagewise model with
back flows in both phases is often used. The aim of this work is to obtain the analy-
tical solution of the model with back flows in the form of the dependence of the
first moment and dimensionless variance of concentration response in the dispersed
phase outlet on hold-up, coefficients of back flow and volumetric mass transfer
coefficient.

THEORETICAL

Model with Back Flows

The stagewise model with back flows describing the behaviour of mechanically
agitated extraction column with stationary continuous phase (Fig. 1) was derived
on the following assumptions:
— the column consists of n ideally agitated stages of the same volume; there exist

back flows of phases between neighbouring stages,
— mass transfer occurs only in the stages,
— the flow rate of dispersed phase, back flows, q, q, volumes of phases v, v,,,

in stages, and volumetric mass transfer coefficient, kA, are constant along the
column,

— the equilibrium can be approximated by a linear relation, i.e., distribution coeffi-
cient m is constant,

— the continuous phase does not flow through the column,

Qxoj

(Qx+x)xiIx--

(Qx4cx;xII qx

_4j Fzo.1f fliij Stagewise model with back flows in both

Qxf
phases
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Extraction Column with Stationary Continuous Phase 1879

— the equipment operates in the steady-state hydrodynamic regime without mass
transfer before carrying out the injection.

Without loss of generality, it was assumed that
— the column does not contain the observed component before carrying out the

injection,
the injection of M kmol of solute is carried out at time t = 0 into the dispersed
phase entering the column and is carried out in such a way that it can be ap-
proximated by the Dirac pulse c5(t).

Then the balance equation holds for the solute (y denotes the continuous phase):

v = — x1) + q(x2 — x1) — J1A, (1)

v = q(y2 — Yi) + J1A, (2)

v = Q(x_1 — x) + q(x1_1 — 2x1 + x+1) — JA , i = 2 n — 1 (3)

= q(y1_1 — 2y + yj÷i) + JA, (4)

v = — x) + q(x_ 1 — x) — JA, (5)

= q(y-1 — y1) + JA (6)

with boundary conditions

x.(0)=0, i=1,...n (7)

y.(O) = 0,

M
xo(t) = — 5(t) , (8)Q

where

J1A = kA(, — , = , ... . (9)

On introducing new quantities T, E, N, a, b using Eqs (1O)—(13), i.e.
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T=P—'1, (Jo)Q

E=m=m', (ii)

(12)

a==--, b=----, (13)

(where T is the mean residence time of dispersed phase in a stage, V = v, + v, is
the stage volume, cii is the hold-up of dispersed phase, E is the extraction ratio, i.e.
the ratio of solute amount in the continuous and dispersed phase in a stage at equi-
librium, N is the mass transfer number, and a, b are coefficients of back flow related
to the flow rate of dispersed phase), Eqs (1) —(6) and (9) can be written in the form

dx1 NT — = a(x2 — x1) + x0 + (1 + N) x1, (14)dt m

T = b(y2 — Yi) + Nx1 — NYi' (15)mdt m

dx. NT — a(x1+1 — 2x + x1_1) + x_1 -f- — (1 + N) x,
dt in

i=2,...n—1 (16)

= b(y+1 — 2y + v1_1) + Nx — (17)indt m

dx NT = a(—x + x,_ ) + x_1 + — (1 + N) x, (18)dt in

T = b(—y1, + y1) + Nx — y. (19)m dt in

Difference Equations for Moments of Normalized Responses

We are interested in solving the set of equations (14)—(19)in the form of dependence
of the first moment and dimensionless variance of concentration response in the
dispersed phase in the n-th stage on parameters N, a, cli.

The r-th moments of normalized responses in the i-th stage are defined as
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= dt y(r) ! try1(t) dt . (20)

With regard to conditions (7) and to the exponential decrease of functions x1(t),
y1(t) to zero for t — oo, we obtain, by integrating per partes, the following relations

! It11dt = —rX, I t'4!'dt = —rY'. (21)MJ0 dt MJ0 dt

By multiplying Eqs (14)—(19) by the combination of quantities trQ/M, integrating
from t = 0 to t = oo and rearranging, we obtain the set of difference equations for
the r-th moments, X

— TrX1) = a(X — xv)) + +! yr) —
(1 + N) X (22)

— T rY_ 1) = b(Y — ye)) + NXX1 — yr) (23)m m

—TrX = a(X1 — 2X + x21) + x21 + —

— (1 + N) 2, ... — 1 (24)

—T r' = b(1'1 — 2y + Y1) + NXX — (25)
m m

—TrX1) = a( —X + X 1) + X1 + — (1 + N) X (26)

—T- rY' = b(—1 + Y) + — y(r) (27)m m

Since the injection is considered in the form of the Dirac pulse, the following rela-
tions hold

= 1 (28)

= 0 for r 1. (29)

With regard to the validity of

I1dt= I-=o, i=1,...,n,
J0 dt J dt
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Eqs (22)—(28) have the following solution for r 0

= X° = 1 (30)

= mX° = in . (31)

By summing Eqs (22), (24) and (26) and after substituting for from Eq. (29),
we get

— Tr x 1) = N y(r) — N — r � 1. (32)
i=1 m i=1 i=1

By summing Eqs (23), (25) and (27), we obtain

—Try— y(r-l) = NXX — Y, r � 1. (33)
m i=i i=1 in j=i

And, finally, by summing Eqs (32) and (33), we obtain the relation

X = Tr(>.X_' + y(r_1) r � 1 (34)j1 rni=1 J

which makes it possible to calculate the r-th moment of normalized response in the
n-th stage from the known (r — 1)-th moments of normalized responses in all stages.

Mean and Variance of Normalized Response in n-th Stage

By inserting the zer th moments from Eqs (28), (30) and (31) into Eq. (34) fo: r = 1
and on rearranging, we obtain the relation for the first moment (mean), u of
the response in the n-th stage:

ji=nT(1+E). (35)

The dimensionless variance 2I2 of response in the n-th stage is defined by

2

(36)
/2 /1

After inserting from Eq. (33) for r = 1 and Y° from Eq. (31) into Eq. (34)

for r = 2, we get

X2 = 2T(1 + E)X1 + 2nT2E2
(37)N
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Therefore, the knowledge of the first moments in all stages is necessary for cal-
culating the variance. By combining Eqs (24) and (25) for r = 1, with (30) and (31)
(see (Dl)), we obtain the linear difference equation with constant coefficients for X1:

abm (1 r bm(1 + 4afl—

[bm
+ a + —_-__—---jX+i +

+ [2 (bm + a) + 1 + 3bm(1 + 2a)1 X1 — ibm + a + 1 + bm(3 + 4a)1 +
L N,, J L N,, J

+ m(1± a)2 = T(1 + E), 1 3,... n —2. (38)

Non-homogeneous difference equation (38) has the general solution

X'1 + (1) (39)

where X' is the general solution of homogeneous equation and 1) is the parti-
cular solution of non-homogeneous equation. The characteristic equation of homo-
geneous form of difference equation (38) can be written in the form

(abm r bm(1 + 3afl 2(2—l)2—Ibm+a+——- —2+
(N,, L N,, J

[ bm(2 + 3afl bm(1 + a))+Ibm+a+1+- —12— —=O. (40)
L N,, J N,, j

It follows from Eq. (40) and theorem (D2) that characteristic equation (40) has one
root equal to one:

(41)

and the remaining three roots are positive, real and different.

If we take account of the validity of Eq. (41), we can write the general solution
of homogeneous equation in the form

= P1 + P24 + P32'3 + P421., (42)

where P, j = 1, ..., 4 are constants which can be obtained from boundary condi-
tions. Let the particular solution have the form

= iR, (43)
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where R is a constant. On inserting this solution for X' into Eq. (38) and taking
account of the validity of Eq. (40), we get, after rearranging, the relation for R

R=T(1+E). (44)

The general solution of difference equation (38) has then the form

= P1 + T(1 + E) i. (45)

After inserting X° and X' from conditions (30) and (29) into Eqs (22)—(27)
for r 1, i = 1, 2, n — 1, n and further on using a similar procedure which
has led to Eq. (38), we obtain Eqs (D3) in Appendix. By inserting X1 from Eq. (45)
into these equations and solving for P taking account of validity of Eq. (40), we get
the equations

P = T(1 + E) C, j = 1, ... 4, (46)

where

C1=bm+a, (47)

f=2
— 1)

— 1] = bm, (48)

= — (bm + a), (49)

+1 = — (bm + a + 1). (50)

It follows from Eqs (45) and (46) that the general solution of difference equation
can be written in terms of constants C, j = 1, ..., 4 in the form

= T(1 + E) [C1 ÷C + i]. (51)

By solving Eqs (48)—(50) for C2, C3, C4, we get the relation

C = {[(a + bm)(2k — 1)— 1] [a(21 — 1)— 1]2 —

— [(a + bm) (2 — 1) — 1] [a(2k — 1)
— 1] 2'' + bm(2k — 2) 22'}/

/{22(22 — 23) [a(24 — 1) — 1] + 22(24 — 22) [a(23 — 1) — 1] +

+ 22(13 — 24) [a(22 —
1)

— 1]} , (52)
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where subscripts j, k, 1 take gradually the values

k=3, 1=4 for j=2;
k=4, 1=2 for j—3;
k—2, 1=3 for j—4.

After inserting C1 from Eq. (47) into (Si), it is possible to carry out the summation

X1 in Eq. (37) which is given in Appendix as Eq. (D4). By combining Eqs

(35)—(37) with the expression for we obtain the resulting relation for dimen-
sionless variance i=1

2 2 4

,(53)
1u2 L N1\1+EJJ fl2j=2 2—1

where Eq. (52) holds for C and Eq. (40) for roots 2.

Special Cases

Practically interesting simplifications are those ones when the longitudial mixing
in one phase is negligible (a -+ 0, and/or b —* 0), mass transfer between phases does
not take place (m = 0), mass transfer between phases is instantaneous (N -+ oo)
and the number of stages is large (n 1).

In the simplified cases, the decrease in the degree of characteristic equation occurs,
and one or two roots disappears. The calculation of constants C from Eq. (52)
requires, however, information on the magnitude of these roots.

Let us denote the roots corresponding to the case a —* 0 by symbols 22, 23 and
the root corresponding to the case b -+ 0 by symbol 24. From the analysis of the
root magnitude for a — 0, b —* 0 follows:

For roots of characteristic equation (40) holds

22> 1, 23 < 1, A4> 1; (54)

with the simplification of general case to the case

a — 0 root 24 cx, (55)

b -+ 0 root 22 . ' 23 -+ 0. (56)
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From inequality (54), it follows for the case n 1

2-÷oo, 2—÷O, 2—oo. (57)

For the simplified cases given below, information (54)—(56) was used when cal-
culating constants C from Eq. (52). After inserting constants C and roots 2 into
Eq. (53), the resulting expression for dimensionless variance was then obtained.

First let us consider the case when the longitudial mixing in the dispersed phase
is negligible, a -+ 0. Then for the mean of response holds Eq. (35), for the charac-
teristic equation and its roots the equations

bm(1 + N1) 22 [bin(2 + N) + N] 2 + bm = 0 (58)

2 — 2bm + N(bm + 1) ± {N(bm 1)] + 4brn}112 592,3 —

2brn(1 + N) (

and for the dimensionless variance the expression

r2 11 2/ E \2—-i1+2bm±——f —2 L N\1+E
- - bm

1 2 )• (60)

In case of b —*0, Eq. (35) holds for the mean of response, for the characteristic
equation and its root 24 hold the relations

—a24+a+1=O (61)

2a+i (62)

and for the dimensionless variance of response the expression

cr2 11 2/ E \21 2 r (a \fl— = -I 1 + 2a + —( I — — a(a + 1)1 1 — ( I. (63)'L N1 \1 + E/ J L \a + 1J J

If the instantaneous mass transfer takes place between phases, N1 —* oo, then
Eq. (35) holds for the mean of response, for the characteristic equation and its root
hold the equations

—(a + bm)A + a + bm + 1 = 0 (64)
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2a+bm+1 (65)a + bm

and for the variance the expression

[1+2(a+bm)]_(a+bm)(a+bm+1)[1_(±___)/1 n n a+bm+1
(66)

If the injection into the dispersed phase is formed by a substance which does not
pass to the continuous phase (m 0 and consequently E = 0, too),

ji=nT=nc1i— (67)

holds for the mean of response,

—aA+a+1=O (68)

(69)

for the characteristic equation and its root, and

= (1 + 2a) -- a(a +1) [1 - (___)n] (70)

for the dimensionless variance.

The resulting equations can be approximated, for a great number of stages (i.e.,
with the validity of Eq. (57)), by the relations which are summarized in Table I.

RESULTS AND DISCUSSION

The analytical solution of linear form of the model with back flows results in non-
linear algebraic dependences between the first two moments of concentration
responses and model parameters 1i, a, b, N.

The derivation of linear form of the model is based on several assumptions. The
condition of constant flow rate of phase is fulfilled, e.g., in a wide class of problems
concerning the extraction of metals with chemical reaction. If the extraction takes
place in the region of low concentrations of solute, it is often possible, even in case
of extraction with chemical reaction, to consider the distribution coefficient and the
mass transfer coefficient to be constant. For a normal coalescing system and a column
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of usual length, the assumption of invariability of the size of interfacial area with
the column length is usually fulfilled to a sufficient extent.

In the linear case, it is possible to calculate, by means of the derived relations, the
following quantities:
— hold-up of the dispersed phase, tIi, from the first moment of response to the

(5-injection of tracer into the dispersed phase (Eq. (67));
— back-flow coefficient in the dispersed phase, a, from the dimensionless variance

of response to (5-injection of tracer into the dispersed phase (Eq. (70));
— mass transfer number, N, from the dimensionless variance of response to the

(5-injection of solute into the dispersed phase (Eqs (53, (52) and (40)) since the

TABLE I

Resulting expressions for mean and dimensionless variance of concentration response for a great
number of stages

Simpli- a2
fication ;-

2(E\2
— nT(1 + E) - 1 + 2(bm + a) + —

—) ] —N 1+E
2 [(bm + a) (2224 — 1) — 1 bm 23

]L -1) +

22, 14 > 1; 23 < 1;
where for 22, 23, 24 is:

bm(1 + 3a)
_[bm+ a+ ]22+N

bm+a+1+— 2 0+ [
bm(2 + 3a) bm(1 + a)

N ]
1 2m=O nT —[1+2a]—--a(a+1)n n

1 2
N —+ cxj nT(1 + E) — [1 + 2(bm + a)] — — [a(a + 1) + bm(bm + 1) + 2abmjn n

2(E)2]
2b=O nT(1+E) -[1+2a+_l_-_--_ ——a(a+1)n N1k1+E n

a==O nT(1+E) —I1+2bm+——(-
ir 2 / E

)2]
2 r 4bm1112

L N I — bm [(bm + 1)2 +
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missing back-flow coefficient in the continuous phase, b, can be obtained, e.g.,
by the method reported by Pekovich et al.2

In the nonlinear case, it is possible to obtain a good initial estimate of parameters
P, a, N from the approximate expressions given in Table I. Neglecting the last
term in the expression for dimensionless variance, which is possible in usual case
of sufficiently long columns, results in a great simplification of calculating the estimate
of parameter N.

Knowledge of these parameters makes it possible to predict the concentration
profile and thus the column efficiency by using the method reported in the preceding
work'.

Relation (35) for the mean of the response to the ö-injection of solute can serve
for checking the correctness of extraction ratio.

It follows from Eq. (53) that the dependence of dimensionless variance cJ2/ji2 on
the reciprocal value of mass transfer number l/N approaches a linear dependence
with increasing number of stages. We can see in Fig. 2 that the sensitivity of variance
a2/,a2 to l/N increases with increasing value of E, i.e., with decreasing hold-up of
the dispersed phase.

CONCLUSION

The method of predicting the efficiency of mechanically agitated extraction columns1
stems from the concentration responses (i.e., dependences of concentrations on time)
to ó-injection of observed substances into the equipment which operate with stationary
continuous phase. The responses are evaluated in terms of a mathematical model.
In a general case, the parameters of model are obtained by the numerical solution
of differential equations combined with the method of fitting the response curves
or their moments. Then operating conditions are chosen so that it is possible to

8

FIG. 2

Dependence of dimensionless variance of
response on reciprocal value of mass transfer
number, n = 20. 1 a = 0, bm = 1, E = 1;
2 a= 0, bm== 2, E= 1; 3 a= 0, bm= 1,
E 2; 4 a= 2, bm= 1, E= 1; S a= 2,
bm—2,E=1;6a=2,bm=l,E=2 2 1'N 6
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expect the validity of parameters obtained even in countercurrent arrangement, and
by solving the model, the concentration profiles and the column efficiency are cal-
culated.

The analytical solution of linear cases leads to the algebraic relations between the
model parameters and moments of responses. The model with back flow in the
continuous and short cut in the dispersed phase was solved by Wichterlová, Rod
and Hanóil'.

The analytical solution of linear form of stagewise model with back flows in both
phases is presented in this paper. The relations between moments (mean and dimen-
sionless variance) of concentration responses and parameters (hold-up of the dis-
persed phase, coefficient of back flow in the dispersed phase, and volumetric mass
transfer coefficient) of the model were derived.

In the linear case, the resulting expressions (67), (70), (53), (52) and (40) can serve
for calculating the parameters, in the nonlinear case, the approximate form of these
relations (Table I) is suitable for determining the initial guesses of parameters for
an iterative procedure of calculating their values.

APPENDIX

(DI) From Eq. (24), r = 1, follows for i = 2, ..., n — 1

y(I) = _! [(1 + N)X1 — — a(Xr+1 — 2X' + x21) — T]

analogously holds for i = 3, ..., n — 2

y1( = -- [(1 + N) X21 — xJ2 — a(X' — 2X1 + xft2) — T]

= -- [(1 + N) X1 —X' — a(X'÷2 — 2X?1 + X) — T]

(D2) It is known that the characteristic polynomial has at most so many real positive
roots, how many are sign changes in the series of coefficients of the polynomial.
If these roots are fewer, they are even number fewer.

(D3) i = 1:

T(1 + E) = — [bm + a + bm(1 + 3a)1x(1) +
N,, L N,, J

r 2bm(1 + afl 1+Ibm+a+1+ iX.
L N,, J
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i — 2:

T(l ± E) = X — ibm + a + bm(1 + 4a)1x(1) +
N,, L N,, J

+ [2 (bm + a) + 1 + 3bm(1 +
2a)1 X' — [brn + a + 1 + 3bm(1 + a)1X'

L N,, J L N,, J

= n — 1:

T(1 + E) — [bin + a + +

+ [2(bm + a) + 1 + 3bm(1±2a)]X(1) -

r bm(3 + 4afl (1) bm(1 + a) (1)— I bm + a + 1 + iX_2 + X_3
L N,, J N,,

n:

T(1 + E) = [bm + a + 1 + ]X1) —

— [bm + a + 1 + bm(2 + 3a)1x( + bm(1 +
L N,, J N,,

(D4)
i=1 flj=2 2—l 2

SYMBOLS

a back-flow coefficient in dispersed phase, Eq. (13)
A interfacial area, m2
b back-flow coefficient in continuous phase, Eq. (13)

extraction ratio, Eq. (11)
J interfacial flux, kmol m2 s1

mass transfer coefficient, m s
m equilibrium distribution coefficient, in (Y/X)eq
M injected solute amount, kmol
n number of stages

N,, mass transfer number, Eq. (12)
q backflow,m3s1
Q flow rate, m3

time, s
T mean residence time of dispersed phase in stage, Eq. (10), s

volume of phase in stage, m3
V stage volume, m3
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1892 Wichterlová

x concentration in dispersed phase, kmol m3
X(r) r-th moment of normalized response in dispersed phase
1' concentration in continuous phase, kmol m3
y(r) r-th moment of normalized response in continuous phase

hold-up of dispersed phase
2 root of characteristic equation

mean residence time of solute in column, s
variance of residence time, s2

Subscripts

i-th stage
x dispersed phase
y continuous phase
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